In vivo human retinal imaging by ultrahigh-speed spectral domain optical coherence tomography.
نویسندگان
چکیده
An ultrahigh-speed spectral domain optical coherence tomography (SD-OCT) system is presented that achieves acquisition rates of 29,300 depth profiles/s. The sensitivity of SD-OCT and time domain OCT (TD-OCT) are experimentally compared, demonstrating a 21.7-dB improvement of SD-OCT over TD-OCT. In vivo images of the human retina are presented, demonstrating the ability to acquire high-quality structural images with an axial resolution of 6 microm at ultrahigh speed and with an ocular exposure level of less than 600 microW.
منابع مشابه
Retinal Ganglion Cell Complex in Alzheimer Disease: Comparing Ganglion Cell Complex and Central Macular Thickness in Alzheimer Disease and Healthy Subjects Using Spectral Domain-Optical Coherence Tomography
Introduction: Alzheimer disease (AD) is the most common form of dementia worldwide. The modalities to diagnose AD are generally expensive and limited. Both the central nervous system (CNS) and the retina are derived from the cranial neural crest; therefore, changes in retinal layers may reflect changes in the CNS tissue. Optical coherence tomography (OCT) machine can show delicate retinal layer...
متن کاملNoninvasive volumetric imaging and morphometry of the rodent retina with high-speed, ultrahigh-resolution optical coherence tomography.
PURPOSE To demonstrate high-speed, ultrahigh-resolution optical coherence tomography (OCT) for noninvasive, in vivo, three-dimensional imaging of the retina in rat and mouse models. METHODS A high-speed, ultrahigh-resolution OCT system using spectral, or Fourier domain, detection has been developed for small animal retinal imaging. Imaging is performed with a contact lens and postobjective sc...
متن کاملIn vivo dynamic human retinal blood flow imaging using ultra-high-speed spectral domain optical Doppler tomography
An ultra-high-speed spectral domain optical Doppler tomography (SD-ODT) system is used to acquire images of blood flow in a human retina in vivo, at 29,000 depth profiles (A-lines) per second and with data acquisition over 99% of the measurement time. The phase stability of the system is examined and image processing algorithms are presented that allow accurate determination of bi-directional D...
متن کاملPulsed illumination spectral-domain optical coherence tomography for human retinal imaging.
We present pulsed illumination spectral-domain optical coherence tomography (SD-OCT) for in vivo human retinal imaging. We analyze the signal-to-noise (SNR) for continuous wave (CW) and pulsed illumination SD-OCT. The lateral beam scan motion is responsible for a SNR drop due to lateral scanning induced interference fringe washout. Pulsed illumination can reduce the SNR drop by shorter sample i...
متن کاملThree-dimensional retinal imaging with high-speed ultrahigh-resolution optical coherence tomography.
PURPOSE To demonstrate high-speed, ultrahigh-resolution, 3-dimensional optical coherence tomography (3D OCT) and new protocols for retinal imaging. METHODS Ultrahigh-resolution OCT using broadband light sources achieves axial image resolutions of approximately 2 microm compared with standard 10-microm-resolution OCT current commercial instruments. High-speed OCT using spectral/Fourier domain ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Optics letters
دوره 29 5 شماره
صفحات -
تاریخ انتشار 2004